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Abstract

Unconventional reservoirs are composed of several types of porosity/hydrocarbon components — standard effective porosity,
clay porosity, total organic carbon (TOC), and micro porosity associated with shales. Adsorbed hydrocarbons reside in the
TOC component and “free” hydrocarbons in the effective porosity and shale micro porosity. An accurate definition of all
these components is essential in defining the reservoir hydrocarbon resource volume.

TOC has a density response close to porosity and indeterminate neutron response. The log responses are probably related
to the degree of thermal maturity.

Previous publications (Holmes, et al. 2011 and 2012) were earlier attempts to define these porosity components. This
publication is a significant refinement, whereby TOC and clay log responses are determined using an iterative technique. An
initial estimate of TOC properties (density vs. neutron) is subtracted from raw logs to derive a “TOC-free” log response.
Then clay log responses are defined by subtracting matrix, effective porosity, and silt contributions. The resulting
density/neutron cross plot is then compared with known clay mineral responses to determine if estimates of the various
component log responses are reasonable. If not, these responses are adjusted and the procedure is repeated. A final check of
the methodology is to calculate a reconstructed porosity, which is effective porosity + clay porosity + shale micro porosity,
and see if it agrees with total porosity determined from the “TOC-free” reservoir model.

Examples of unconventional reservoirs — both gas and oil bearing — are presented.

Introduction

Before the advent of petrophysical evaluation of unconventional reservoirs the reservoir model was simplistic as shown in
Fig. 1. When the importance of unconventional reservoirs became apparent, it was realized that a much more complex
petrophysical model was required. Of prime importance is the dominant role of total organic carbon (TOC) in organic rich
shale.

Also, recognition of the different hydrocarbons in shale is crucial to the understanding of their behavior when the
reservoir is produced. Most of the hydrocarbons in the TOC fraction of the rock are adsorbed onto the rock surface. These
hydrocarbons will only be produced — if at all - later in the life of the reservoir, when pressure has been significantly reduced.
However, there are small volumes of free porosity within the shale — here termed “free shale porosity” - which contains
conventionally mobile hydrocarbons. This is shown in Fig. 2.

The theme of this paper is to quantify the volumes of these two hydrocarbon components using standard triple-combo
well log data.

Statement of Theory and Definition
A geometrical rock model is shown in Fig. 3. The components can be summarized as shown in table 1.
Free shale porosity is usually a small volume (often less than 5% of the total rock volume) and is probably associated with
TOC. ltis believed to contain free hydrocarbons and formation water.

From careful analysis of triple-combo data, combined with core analysis, if available, reasonable volumetric estimates of
each of the components is possible. Core data, although extremely valuable for calibration, is not essential in the analytic
process.



SPE SPE-169535-MS

Emphasis is placed on quantifying the four porosity components Phie, Phigjay, Phisy, and TOC. This is demonstrated in

Fig. 4.

Description and Application of Petrophysical Procedures
A rigorous sequence of calculations is required.

a)

b)

d)

e)

f)

9)

Calculate TOC weight percent from technique of Passey et al (1990) and Schmoker (1989)

Compare with core data if available. If no core TOC analysis are available for calibration, care must be exercised in
application of a reasonable volume for level of organic metamorphism (Passey et al technique) which is a measure
of thermal maturity, and is correlated with vitrinire reflectance (R,).

Our approach is to identify organic-lean shales, which have low resistivities, and identify equivalent porosity log
response. TOC from all 3 porosity logs (if all are available), is then automatically recognized. See Fig. 5.

Convert TOC weight percent to volume fraction conversion

TOC components have densities ranging from 1.25 to 1.8 gm/cc, depending on organic maturity. We have the
capability of applying any value of grain density to make sure this conversion is consistent with the other
components analyzed.

Make standard petrophysical calculations of total porosity (Phiy), shale volume (Vgy) and effective porosity
(Phi,)

Our preferred approach is to calculate Phi; from a density and neutron cross plot. This minimizes errors from
changing grain density, and fluid components.

Subtract From the Density and Neutron Responses the Contribution of:
Matrix
TOC
Effective Porosity
To determine density and neutron responses of the shale only (less TOC) fraction of the rock. Cross plot porosity
volumes of this shale only fraction are:
Clay Porosity
Free Shale Porosity
Examples of a shale-only cross plot is shown on Fig. 6.
The procedure has the added advantage of identifying the likely clay mineral make-up of the rock.

Calculate Free Shale Porosity As
Free shale porosity = Phi; — Phie — PRigigy ... uneeruunainiiiii it e e s e e e, Q)

Obviously negative images of free shale porosity cannot exist. If calculations indeed show negative values, the
problem could be:

Incorrect Phit and/or Phi,, due to erratic log response or an inappropriate Vs, model

Incorrect calculations converting TOC from weight percent to volume percent.

Determine free available porosity
Free Available Porosity = Phi, 4+ Free Shale POTOSItY ........c.ocuie ittt e e e e 2)

A comparison of Phi, with free available porosity is helpful in verifying calculation integrity-clearly free available
porosity must be greater or equal to Phi,. See Fig. 7.

Calculations of Free vs. Adsorbed Hydrocarbon

Free hydrocarbon volumes are calculated using standard technique with the appropriate formation volume factors.
Adsorbed hydrocarbons can be estimated using empirical relations:

For Gas:
Adsorbed G.1.P.= 1359.7 X Area X Thickness X RhoB X (16 X TOC)........c.ccccoiiiuiiiiiiiniinnnnn, 3)
For Oil:
Adsorbed 0.1.P.= 82 X 0.001 X RhoB X h X AT€a X 7758 . ccuririi it it e e e e 4

S2 is the estimated volume of hydrocarbons generated by thermal cracking mg/g rock
An example is shown on a modified Lorenz plot (comparison of calculated values of each component) Fig.7.
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Presentation of Data and Results
Example Unconventional Oil and Gas — Description of Output Data Fig. 9.
Examples are presented as follows
Niobrara Qil Reservoir — Colorado Fig. 10a and 10b.
Bakken Oil Reservoir — Montana Fig. 11.
Shale Gas Reservoir — Western Canada Fig. 12.
Barnett Shale Gas Reservoir — Texas Fig. 13.
Antrim Shale Gas Reservoir — Michigan Fig. 14.

Conclusion
A petrophysical methodology using standard triple-combo well logs has been developed to quantify both free and adsorbed
hydrocarbons volumes in unconventional reservoirs. A key element of the model is the recognition of four porosity
components:

Standard Effective Porosity

Clay Porosity

TOC Porosity

Free Shale Porosity
The last component is whatever the mismatch is between the sum of the prior 3 components and total porosity. The model
should be calibrated to core whenever possible, but does not require core input. Output from the model quantifies the spatial
distribution of free and adsorbed hydrocarbon in both clean and shale fractions of the reservoir sequence. An ancillary
benefit of the model is an estimate of clay mineral species within the shale fraction.

Nomenclature

Phi, = Total porosity

Phi, = Effective porosity

Vgy = Shale volume

RhoB = Density

NPhi = Neutron porosity

RhoB_shale = Density contribution from shale formation
NPhi_Shale = Neutron contribution from shale formation
Phiciay = Clay porosity

Phigs = Free shale porosity

TOC = Total Organic Carbon

S2 = Estimated volumes of hydrocarbons generated by thermal cracking mg/g rock
Phir, = Free Available Porosity = Phig + Phiyg

Sw = Water Saturation
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Tables
Component Fluid Content
Non Shale Matrix (quartz, calcite, etc.) None
Silt (quartz, calcite, etc.) None
Clay Solids Water
Total Organic Carbon (TOC) Adsorbed Hydrocarbons + ?Water
Free Shale Porosity Free Hydrocarbons + Water
Effective Porosity Free Hydrocarbons + Water

Table 1, Summarized components of a geometrical rock model
Figures

Figure 1, Simplistic reservoir model

Matrix Effective Porosity

—
|
The Reservoir :
67—
Figure 2, Shale hydrocarbons by types

Shale hydrocarbons are comprised of different types:

ADSORBED HYDROCARBONS: FREE HYDROCARBONS:
Adsorbed onto the rock surface, and Located in the small to very small volumes of

concentrated in the TOC (total organic porosity dispersed within the shale reservoir
carbon) fraction of the shale
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Figure 3, A geometrical rock model
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Figure 6, Shale-only cross plot
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Figure 8, A modified Lorenz plot (comparison of calculated values of each component)
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Figure 10a, Niobrara Oil Reservoir — Colorado
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Figure 10b, Niobrara Oil Reservoir — Colorado
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Figure 11, Bakken Oil Reservoir — Montana
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Figure 12, Shale Gas Reservoir — Western Canada
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Figure 13, Barnett Shale Gas Reservoir — Texas
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Figure 14, Antrim Shale Gas Reservoir — Michigan
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